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Abstract
In humans, regimented resistance training has been shown to promote substantial

increases in skeletal muscle mass. With respect to traditional resistance training methods, the

prevailing opinion is that an intensity of greater than ~60% of 1 repetition maximum (R}

necessary to elicit significant increases in muscular size. It has been surmised that th
w

minimum threshold required to activate the complete spectrum of fiber types, parti 0Se
associated with the largest motor units. There is emerging evidence, however, th -intensity
resistance training performed with blood flow restriction (BFR) can promote marfke reases in

muscle hypertrophy, in many cases equal to that of traditional high-intensity se. The
anabolic effects of such occlusion-based training have been attributed to incr%% @els of
ui

metabolic stress that mediates hypertrophy at least in part by enhancing feéruitihent of high-
threshold motor units. Recently, several researchers have put forth the theory that low intensity
exercise (<50% 1RM) performed without BFR can promote increase$\ e size equal, or
perhaps even superior, to that at higher intensities provided trainingéig.%?ed out to volitional
muscular failure. Proponents of the theory postulate that fatiguidg.contractions at light loads is
simply a milder form of BFR and thus ultimately results in ma Wle fiber
recruitment.Current research indicates that low-load exercige @"’- eed promote increases in

607

exercise in well-trained subjects as experimental gs on the topic in this population are
lacking. Practical implications of these findi re discussed.
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1. Introduction

and chronic imposed demands (1). Studies have clearly demonstrated that when subj t

functional overload, muscle tissue responds by increasing its cross sectional area A) imal
models using passive stretch, synergist ablation (surgical removal of one mu cause
increased overload of the synergists), and neuromuscular electrical stim o oduce
hypertrophic increases of as much as 100% (2). In humans, regimen ce training has

been shown to promote marked increases in skeletal muscle mass-(3, 4) Ithough hypertrophy
occurs in all fiber types, fast-twitch (FT) fibers display an ately 50% greater capacity

for growth compared to their slow-twitch (ST) counterparts . That said, there is a high

degree of inter-individual variability with respect e f hypertrophic adaptation across the

full spectrum of fiber types (5). '
Three primary factors have been pro -e to mediate hypertrophic adaptations pursuant

abolic stress and muscle damage (3). A number of

N

to resistance training: mechanical tepsio

@)

researchers have surmised that tensiar¥is the primary driving force in this process (6, 7).

However, assuming that a given lewel of mechanical tension is achieved, both metabolic stress

and tissue damage may/pecgme increasingly important factors in optimizing a hypertrophic
response (8, 9). St to date are inconclusive as to whether one particular parameter
predominates spect to activating the cellular and molecular mechanisms responsible for

wth (2).

ect to traditional resistance training methods, the prevailing opinion is that a
concentric intensity of greater than ~60% of 1 repetition maximum (RM) is necessary to elicit

ant increases in muscular size (10-12). It has been surmised that this is the minimum



RUNNING HEADER: Intensity Threshold for Hypertrophic Adaptations

threshold required to activate the complete spectrum of fiber types, particularly those associate%

resistance training performed with blood flow restriction (BRF) can promote significant
increases in muscle hypertrophy, in many cases equal to that of traditional high-i mrcise
(14). Restriction of blood flow is achieved by wrapping an elastic implemen as knee or
elbow wraps) at the proximal portion of a limb so that circulation is occlgdéd to \working muscles
during performance of resistance exercise. The anabolic effects of sd@n-based training
have been attributed to increased levels of metabolic stress--i.e.w of metabolites
pursuant to glycolytic energy production. It is theorized th@lic stress mediates
hypertrophy at least in part by enhancing recruitment of highsthreshold MUs (15), but other

mechanisms are also believed to play a role in the @

Cluding cell swelling, elevated

Xygen species (16, 17)

hormonal levels, and increased production -

Recently, several researchers have putfarth the theory that low intensity exercise (<50%

‘q} reases in muscle size equal, or perhaps even

superior, to that at higher intensitie vided training is carried out to volitional muscular failure

1RM) performed without BFR can

(4, 18). Proponents of the t tulate that fatiguing contractions at light loads is simply a
milder form of BFR and/thus ultimately results in maximal muscle fiber recruitment (19). It has
been surmised tha@ progressive overload is employed, even the most serious lifters can
realize signifi creases in muscle hypertrophy from such low-intensity training (19). The

purpose o therefore will be to evaluate the literature on the topic in an attempt to

determine thexminimum intensity required for optimal hypertrophic adaptations. Evidence-based
récommendations will then be made to help guide program design when devising hypertrophy-

routines.
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To carry out this review, English-language literature searches of the PubMed, EBSCO,

and Google Scholar databases were conducted for all time periods up to December 2012.
Combinations of the following keywords were used as search terms: "skeletal muscle’; @

hypertrophy"; “muscle growth”; "cross sectional area™; "intensity"; "loading"; "loyload™;

"repetition range"; "resistance training"; "resistance exercise". The reference f articles
retrieved in the search were then screened for any additional articles th d relavance to the
topic. @
2. Theoretical Basis for Lower Intensity Hypertfephic Adaptations
Maximal muscle hypertrophy is predicated on recrany MU s as possible in the
target muscles and achieving high firing rates in these@ a’sufficient length of time (11).
s

ar adaptations are still not fully

understood. Current theory proposes that the ess isyegulated by a phenomenon called
mechanotransduction whereby sarcolemma -@nd mechanosensors, such as integrins and focal
‘q> ical signals that mediate intracellular anabolic

and catabolic pathways, ultimately ing to a shift in muscle protein balance that favors

The mechanisms by which mechanical forces Iea

adhesions, convert mechanical ener

synthesis over degradation ummation of anabolic signals of an adequate magnitude is
required to generate susfained responses that lead to muscle protein accretion (21).
Many sign pathways have been identified as playing a part in the regulation of

muscle mass, @rtain pathways acting in a permissive role and others providing direct
u

mediation@ processes that influence messenger RNA translation and hypertrophy (22).
Signa@ ays that have been identified include phosphatidylinositol 3-kinase-protein
kiriase Bxmammalian target of rapamycin (PI13K-Akt), mitogen-activated protein kinase

), and various calcium- (Ca*") dependent pathways, amongst others. Although these
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pathways may overlap at key regulatory steps, evidence suggests that they are interactive rather

than redundant (23). For example, although Akt and MAPK/extracellular signal-related k

[o5)

(ERK) both have been shown to stimulate mammalian target of rapamycin (nTOR) t 3
extent, the combined effects of both lead to an even greater stimulation compare %
pathway alone (24). A complete discussion of these signaling pathways and theifunctions is
beyond the scope of this article. For further information, interested read re keferred to recent
reviews by Bassel-Duby and Olson, (25), Miyazaki and Esser (26), é& 27)..

Claims for a hypertrophic effect of low-intensity resistadce exercgise are based on the

provided training is carried out to the point of concentric musguldr failure (18). It remains

pr ice. There is evidence that fatiguing

electremygrophy (EMG) activity, presumably

premise that recruitment of the full spectrum of MUs is ac virtually any intensity

questionable, however, whether this belief holds

contractions result in a corresponding increase-i

resulting from an increased contributio -threshold MUs recruited to maintain force

output (28), but it is not clear what | ensity is required to initiate activation of these
high-threshold MUs. Furthermore, nd a certain intensity level the resistive exercise would

become more reliant on aer abolism and thus could be continued for extended periods of
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Stydies/corroborating the supposition that low-intensity training to failure equates to a
milder form FR are lacking. Wernbom et al. (4) demonstrated that peak EMG activity was

tween 3 sets of low intensity (30% 1-RM) unilateral knee extensions performed with

out BFR to muscular failure. Mean values were not reported thereby prohibiting analysis
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of the effects on muscle recruitment over the course of the entire range of sets. Further research
IS necessary to better determine the relationship between muscle recruitment and low-inte

exercise with and without blood flow restriciton.

There is evidence that muscle recruitment is indeed greater in high-inten@
compared to low-intensity blood flow restricted exercise. Employing a mod%gxamined
inorganic phosphate splitting via *'P-magnetic resonance spectroscopy, a ehal (30) displayed
that FT fiber recruitment occurred in only 31% of subjects who perf @& training at 20%

1RM compared with 70% of those who trained at 65% 1RM. THis findingis consistent with

EMG activity compared to BFR exercise at 20% 1RM, indicating an attenuated recruitment at
the lower training intensity (31, 32). Follow up W a et al.(33) showed that splitting of
Pi peaks at 30% 1RM approached those of hi intensity exercise, but nevertheless did not

uitment. Only when blood flow restricted

other research showing that exercise performed at high-int oduces substantially greater

exercise was carried out at an intensjty 1RM did P; peaks equate to, and actually exceed,
those associated with traditional hi tensity training. Lending further support to these
findings, Cook et al. (34) r monstrated that EMG amplitude of the vastus lateralis,
vastus medialis and rectis femoris during knee extension exercise to failure was significantly

greater at a high i ity (0% 1RM) than at low intensity (20% 1RM) both with and without

BFR. The aforioned studies are limited to the use of the knee extension; further research is

7

‘.

performed tosfaiure to provide a better understanding of the subject.

O
X

ty of single- and multi-joint movements with varying percentages of 1RM

3. Acute Responses to Varying Resistance Exercise Intensities
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Several animal studies have evaluated the effects of different intensities on acute

signaling responses. Using an in situ model, Martineau et al. (35) subjected rat plantaris

to peak concentric, eccentric, and isometric actions via electrical stimulation. Result
tension-dependent phosphorylation of c-Jun N-terminal kinase (JNK) and ERK@

mechanical tension resulting in progressively greater phosphorylation. This ts that peak
tension is a better predictor of MAPK phosphorylation than either time-yhder-tension or rate of
tension development. Interestingly, follow-up work by the same lab @nd a linear
relationship between time under tension and signaling of INK reas rate of tension change

ef fepisior

Taken together, these findings point to the importance of o

showed no effect, highlighting the importance of time und

in anabolic signaling (36).

raining volume for maximizing

the acute molecular responses related to skeletal h rtrophy irrespective of training
intensity.

In an attempt to qualify the acute effects of resistance training intensity in humans,

Kumar et al. (37) investigated the acyte s ge responses at 20-90% 1 RM in healthy young
and old men. The protocol was desigried so that volume of training was approximately equal

at 20% intensity participants performed 3 sets of 27
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effect on muscle protein synthesis (MPS) reaches a maximum at ~60%-75% 1RM of isotonic

exercise. The authors did not state whether low-load training was carried out to muscular fai

but based on the study design this does not appear to be the case. This is an important.li @
as research indicates the hypertrophic response to low-load training is predicate@o the
point of voluntary muscular failure (38-40).
Burd et al. (39) sought to determine whether resistance exercise itensity\had a
-

differential effect on MPS and anabolic signaling. A quasi within-su«j%
nee

15 young, recreationally active men performed 4 sets of unilateral k

n was used where
ension at 30% and
performing the exercise at
30% 1RM with external work (repetitions x load) ma@he 90% condition. At 4-h post-
exercise, measures of MPS were elevated at all cns died, but levels in the 30% work-

matched condition were approximately hal)fthe other 2 conditions. Interestingly,

90% 1RM to volitional muscular failure. A third condition '

myofibrillar MPS remained elevated at 24-hp exercise only in the 30% to failure condition.

S

condition, and this elevation was ¢ ated with the degree of stimulation of myofibrillar MPS.

Phosphorylation of p70S6K was signjf creased at 4-h only in the 30% to failure
These findings suggest that nsity exercise performed to volitional fatigue induces greater
acute muscular responses compated to high intensity exercise. The fact that volume was
substantially great the 30% condition versus the 90% condition confounds the ability to
isolate the im intensity on the variables studied.

Althougdh these studies provide relevant clues as to the anabolic effects of various

intens@ rcise, their findings are not necessarily predictive of long-term changes in lean

mass. Evaluation of measures of MPS following an acute bout of resistance exercise do not

occur in parallel with chronic upregulation of causative myogenic signals (41) and may

10
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not reflect hypertrophic responses experienced pursuant to regimented resistance training carrie
out over a period of weeks or months (42). Moreover, the acute responses of subjects wit
minimal training experience, in particular, must be viewed with caution as results may b
primarily a function of the unfamiliarity of exercise and thus not applicable to the/response.of
well-trained individuals (2, 43). Given these inherent limitations, any attem trapolate
findings from such data to hypertrophic adaptations is speculative, at best: ig
4. Chronic Adaptations to Varying Resistance Exercise ities

A number of studies have attempted to directly evaluatedsng-term hypertrophic
adaptations along the strength-endurance intensity continu@ngs between these studies
are inconsistent and discrepant. Table 1 summarizes the rel tfesearch to date.

topic in a well-controlled experimental

22.5 + 5.8 years) were randomly assigned

(n=11) that performed 9-11 RM for3/gets with 2 minute rest intervals, or; a high repetition group
(n=7) that performed 20-28 2 sets with 1 minute rest intervals. A control group (n=5)

performed no resistancg €xercise./The exercise regimen consisted of the leg press, squat, and

knee extension wi al voldme load approximately equal between groups. Training was
carried out 2 eek for the first 4 weeks and 3 days a week for the final 4 weeks.
Resistanc rogressively increased throughout the training period to maintain repetition

range@s ts were performed to momentary concentric muscular failure. Muscle biopsy

S used\to assess changes in fiber CSA of the vastus lateralis. After 8 weeks, both the high and

v% diate repetition groups displayed significant increases of 12.5%, 19.5%, and 26% in CSA

11



RUNNING HEADER: Intensity Threshold for Hypertrophic Adaptations

for type I, 1A, and 11X fibers, respectively. Increases in muscle fiber CSA for the high repetitio
group did not reach statistical significance for any of the fiber types, indicating that lower-
intensity exercise is substandard for promoting increases in hypertrophy. @
Employing the same basic training program as Campos et al. (44), Leger %
divided 25 healthy males into either a low or high repetition group--an interrmegi roup was
not included as part of the study design. Subjects were older than in the pos‘et al. (44) study
(age 36 £ 4.9 years) and had not participated in a resistance training @r at least 1 year.
Muscle volume was assessed by computerized tomography (CTWweeks, an
approximately 10% increase in quadriceps CSA was noted roups with no significant
differences found between training protocols. Follow-up work by this laboratory (46) in a similar
population demographic also reported 10% increq riceps hypertrophy with no
significant differences between groups using the.same training protocol. The researchers

attributed the discrepancy between their re nd that of Campos et al. (44) to the detrained

-

population would promote a sufficientcoverload stimulus to elicit increases in muscle growth.

status of the somewhat older subjec g that any type of resistance training in this

Tanimoto and Ishii aluated the muscular response of low-intensity exercise
performed with slow

routine in 24 untraified menx<&ubjects were randomly assigned to perform repetitions of the leg

extension at e% RM with a 6 second cadence (3 seconds for both concentric and

antl no relaxing phase between repetitions (LST; n=8) or 80% RM at a tempo

répetitions (HN; n=8). Both of these groups performed ~8 repetitions per set until failure and the

y was progressively adjusted based on performance in the previous session. A third group

12
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(LN; n=8) performed low-intensity exercise (50% RM) using the normal tempo employed in th

high-intensity protocol and thus did not work to volitional failure. Training was carried o

days a week for 12 weeks. At the end of the study period, muscle CSA as determined
magnetic resonance imaging (MRI) increased significantly in both LST and HN %‘%
versus 4.3 + 2.1%, respectively), with no significant differences noted betwe
group did not significantly increase muscle mass. These results again e Si
of training to muscular failure for eliciting a hypertrophic response d@oad training.
This study design was subsequently replicated by the sare laboratory (47) using a total-
body resistance training program consisting of 3 sets of th@@veﬁ press, lat pull-down,
abdominal bend, and back extension. Intensity was slightly kigher for both groups (55%-60% in
LST and 80%-90% in HN) as necessitated by the @0 nature of the exercises. Again,
significant increases in muscle size were dete inb
with
-

thereby making it impossible to dr levant conclusions as to traditional intensity

LST and HN (‘mean + SD = 6.8 +

3.4% versus 9.1 + 4.2%, respectively), ignificant differences noted between groups.

@D

While these findings are intriguing, nfounded by the altered repetition cadence

recommendations. Moreov( gh results did not reach statistical significance in the total-
body protocol, high-intensity exercise produced an approximately 34% greater absolute increase

likely that the small sample size resulted in a type Il error.

in hypertrophy. T it see

8) studied the effects of light-load resistance exercise in 11 sedentary young

t design was employed whereby subjects performed 10 sets of unilateral leg

.,r domigzed, counterbalanced fashion. Training was carried out 3 days-a-week for a total of 12

veeks. Muscle CSA of the quadriceps as determined by MRI was greater by threefold in the

13
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high-intensity leg compared to the leg that performed low-intensity exercise. It should be noted
that the low-intensity exercise involved performing one repetition every 5 seconds for 3

calling into question the extent of fatigue experienced during exercise performance and
obscuring the ability to extrapolate conclusions to low-load training to failure. | % a
subsequent study using the same protocol in healthy, young males showed a gignificant 18%
12

increase in satellite cell number associated with the low-load protocol a eks of training,

indicating that low-intensity exercise has a favorable effect on early

In a follow-up to their previously mentioned acute trainw

laboratory employed a quasi within-subject design to test th r"-‘ esis that these results would

genesis (49).

9), Stuart Phillips'

translate into long-term gains in muscle hypertrophy (50). teén untrained males (‘mean + SD

age 21 + 1 years) were randomly assigned to perf of 3-different resistance training
protocols involving unilateral knee extensionexercise for each leg to momentary concentric
muscular failure as follows: 3 sets of low 'ercise at 30% RM; 3 sets of high-intensity
rcise at 80% RM. Training was carried out 3 days

per week for 10 weeks. Muscular adaptations of the vastus lateralis was assessed by magnetic

exercise at 80% RM; 1 set of high-i

resonance imaging and mu y. At the end of the study period, both the low- and multi-set

high-intensity groups reali icant increases in muscle volume (‘mean = SD = 6.8 + 1.8%

versus 7.2 + 1.9%@! y), with no differences found between groups. The single set high-

intensity grou howed significant increases in hypertrophy, although the gains were less

than half that gi'thg other 2 groups (‘mean = SD = 3.2 + 0.8%,). Interestingly, fiber analysis by

muscl@ owed that the low-intensity group displayed greater hypertrophy of type I fibers
th

ile igh-intensity group displayed greater hypertrophy of type Il fibers, suggesting a fiber

-specific adaptive response along the strength-endurance continuum. The study was limited

14
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by the sole use of the leg extension exercise, which is not representative of training routines
normally employed in a hypertrophy-oriented program.

A recent study by Schuenke et al. (51) investigated both the effects of intensit a
tempo on muscle hypertrophy. Thirty-four untrained women were randomly divi %}f 3
groups: A traditional strength (TS) group that performed sets of 6-10RM at ce of 1-
2 seconds on the concentric and eccentric portion of the repetition; a tra@ uscular

endurance (TE) group that performed 20-30 repetitions at the same K& , and; a slow-

speed (SS) group that performed 6-10 repetitions at a tempo ofkG-seconds on concentric action

while TS trained at ~80-85% 1RM. The longer durati@e e in the SS routine is
associated with a reduced momentum and a greatis cy in average force (versus peak

force) over a complete repetition compared t ining with TE. Training consisted of 3 sets of

a

and 4 seconds on the eccentric action. Both TE and SS trai intensity of ~40-60% 1RM

/9

ntary muscular failure with ~2 minutes rest

arried out 2 days/week for the first week and

3 days/week for the remaining 5 weeks. Muscle biopsy was used to assess CSA of the vastus

f' :)'ncreases were noted in TS for type I, type IlA, and type 11X

fiber area (‘mean + SD//26,8+ 22/7%, 32.9 + 20.4%, and 41.1 £ 32.7% respectively) whereas no

lateralis. After 6 weeks, sig

significant differe were-séen in TE. Interestingly, SS displayed significant increases in both

9

by TS. It ceivable that hypertrophy might manifest more gradually in lower intensity
exerci@ 0, would therefore not have been evident in this study given its short duration.
@ost recently, Ogasawara et al. (52) found similar increases in CSA of the pectoralis
n

Wb d triceps brachii in subjects performing free-weight bench press exercise at 75% 1RM

type 1A, and X CSA, although these changes were less than half that of that experienced

15
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versus 30% 1RM to concentric muscle failure. The study employed a within-subject design

whereby 9 previously untrained subjects performed the higher intensity exercise for the initi
weeks of the study and then, after a 12-month washout period of detraining, perform

of the low-load exercise in non-randomized fashion. Although intriguing, these findings t be

viewed with caution as "muscle memory" via neural mechanisms and/or satetti Il accretion
may have influenced results (5, 53, 54)

The mixed and conflicting results between these studies is hatd. 1o and likely a

function of the varied study designs and methods of assessmentCQ\n\eiSﬁe of note is the use of

different techniques for measuring muscular adaptations i |opsy, MRI, ultrasound,
nt st '
gs<2).

and/or CT. Each of these techniques has various inher s and weaknesses, causing

difficulties when attempting to reconcile research
The use of different exercise protocols-serves to“further confound results. Some of the

studies involved only a few sets of sing

xercise while others employed multi-set routines

consisting of combinations of single -joint exercises more representative of traditional

hypertrophy training practices. In addition, some studies equated volume between training
conditions while others did se confounding issues hinder the ability to draw relevant

comparisons between

Another m limitation of the current body of literature is a lack of statistical power due

ps. Studies to date have generally involved fewer than ~30 exercising subjects

16
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Finally and importantly, all studies to date have been carried out in untrained or
minimally trained subjects. It is well-established that highly trained individuals respond
differently than those who lack training experience (55). A "ceiling effect” makes it
progressively more difficult for trained individuals to increase muscular gains, t y\
necessitating more demanding resistance training protocols to elicit a hypert ic_response.
Moreover, there is emerging evidence that consistent resistance exercis altex anabolic
intracellular signaling in rodents (56) and humans (57), indicating a @g% hypertrophic
response. As such, current findings cannot necessarily be generatized to a well-trained

@@ I effects of training

intensity in those with at least 1 year or more of regular, consistent resistance training

population. Future research should therefore focus on the

experience.

5 lusio
Although it is evident that a minimumidtensity threshold exists to promote increases in

ed to achieve hypertrophic adaptations has yet to

be elucidated. Based on current res , it does appear that low-load exercise can indeed

oo

functionally, metabolicgly,andfof aesthetically meaningful. However, whether hypertrophic

adaptations can e@ leved with higher-intensity resistance exercise (< 60% 1RM)

remains dubio rthermore, it is not clear as to what, if any, hypertrophic effects are seen with

muscle mass, the precise level of int

promote increases in musclg in untrained subjects, and that these gains may be

low inten r in well-trained subjects as experimental studies on the topic in this
population are lacking.
e preponderance of evidence indicates that blood flow restricted resistance exercise at

wl y levels <20% 1RM do not result in recruitment of the full spectrum of MUs, making it

17
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highly unlikely that non-occluded resistance exercise at similar intensities would achieve

comparable muscle activation to high-intensity exercise. Recruitment of FT fibers with d

bloo
flow restricted resistance exercise at 30% has been shown to approach, but not equal th

high-intensity exercise (33). Given these findings, it would appear that intensities/ahove 38% are

needed for complete muscle fiber recruitment. It therefore stands to reason that-if-traditional
resistance exercise < 30% 1RM does in fact promote muscular gains equat-to that of high
intensity exercise as has been found in a limited number of studies ( , the differences in

protein accretion seemingly would have to be made up by a gredter degrge of hypertrophy in type
(cell swelling, autocrine/paracrine factors, systemic h@e evations, etc) may allow for such
enhanced adaptations. This appears to be the case ;as marked hypertrophy is routinely

seen at intensities < 30% 1RM (14), presumap ediated by a heightened metabolic buildup

| and perhaps type 1A fibers. It is conceivable that other f ibuted to metabolic stress

heightening metabolic stress at lo ads (those with consistent torques) while others may not

(those with torque curves tha derably drop off during the lift). Further research is needed to
investigate these issue
Another consideration that needs to be taken into account is the necessity to train to

fatigue during

lag failure increases the potential for overtraining and psychological burnout

tensity training. It has been hypothesized that persistently training to

18
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study. The negative effects of overtraining generally take time to manifest and thus likely woul

not have been evident in the current studies on training intensity given their relatively sho

duration (< 12 weeks). In practice, however, this would necessitate the implementati .@
%g

frequent unloading periods over the course of a periodized training program co ed to higher

intensity exercise. It is not clear how such alterations might affect long-term rophic gains.
Research seems to suggest that a moderate repetition rage (6-12 RM) usikg a controlled

lifting cadence may be optimal for maximizing gains in muscle hypé& , 61, 62), although

evidence is far from conclusive on the subject. This so-called "Rypertrophy range™ may

conceivably provide an optimal combination of mechanical metabolic stress, and muscle

damage, thereby generating a sustained anabolic resp@mximizes muscle protein
accretion (3). Regardless of the existence of an id@e phy range, however, a strong case
can be made for incorporating the use of a variety of training intensities into a hypertrophy-
oriented program. Low repetition resista 1-5 RM) enhances neuromuscular

@ aximal strength (61). These adaptations allow the

use of heavier loads, and thereby g : mechanical tension, at a given moderate intensity. On

adaptations necessary for the deve

the other hand, higher-repe iti Q'ning (15+ RM) can help to attenuate the exercise-induced
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displaying little to no muscular gains and others showing profound increases in muscle mass (64

65). These variances may be due, at least in part, to differences in muscle fiber type distripution

-

for a given muscle (66), and these disparities can have implications in the respongg<to exercise

Studies show a large genetic variability between individuals in the percent of FT versus

(67). This raises the possibility that adaptations to low and high training inte may be
specific to the fiber-type profile of the target muscle. For example, ther@ ce that the

predominantly ST soleus muscle is much less responsive to traditio e exercise

compared to primarily FT muscles such as the vastus lateralis amﬂ&?ps brachii (68). Might

s igh percentage of slow

twitch fibers? Although this concept is intriguing in theory, however, a fiber-type exercise

the soleus might respond better to a high-repetition protoc
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irmed through research and thus
remains speculative. Moreover, given the inter=individual variability of fiber-type composition, it
would be difficult if not impossible to invasively determine fiber-type ratios of each muscle,

thus making application impractical ast majority of people.

In conclusion, there is evid that low-load training can increase muscle mass in

untrained subjects. Therefo
increase muscle mass ingpea

/-stage training. This may have particular relevance in

oad training to failure appears to be an effective strategy to

populations such %@ and others who may not be able to perform resistance exercise at

i remains questionable, however, as to whether the extent of hypertrophy in

omparable with what can be achieved through heavy resistance exercise.
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time. Future research should seek to clarify the extent of hypertrophic effects along the intensit

continuum using realistic training programs, as well as elucidating these effects in those

considerable training experience.

Table 1: Summary of Long-Term Studies Evaluating the Effects of Train

Muscle Hypertrophy

i@] on

Study Subjects Design Volume Trainto | Measurement | Findings
Equated? | Failure?
Campos | 32 untrained | Random assignment to Yes Yes M bi\%sy Significant
et al. (44) | young men | either low intensity (3-5 increases in CSA
(5 served as | RM), intermediate intensity for high-intensity
non- (9-11 RM) for 3 sets with 2 \ exercise; no
exercising minute rest intervals, or; significant
controls) high intensity (20-28 RM) % increase in CSA
exercise. Exercise consisted for low-intensity
of 2-4 sets of squat, leg exercise
press and leg extension,
performed 3 days a week
for 8 weeks.
Leger et | 24 untrained | Random assignment to Yes Q Yes CT No differences in
al. (45) middle-aged | either low intensity (3-5 CSA between
men RM) or a high intensity low- and high-
(20-28 RM) exercise. O intensity exercise
Exercise consisted of 2-4
sets of squat, leg press
leg extension, performed 3
days a week for 8 wgeks.
Lamon et | 25 untrained | Random assignmeént t Yes Yes CT No differences in
al. (46) middle-aged | either low intensity CSA between
men RM) or a high-intensity low- and high-
intensity exercise
Tanimoto | 24 untrained | ®Ran assignment to No Yes MRI No differences in
and Ishii | young men her 50% RM with a 6 CSA between
(40) cond tempo and no low- and high-

&

=

)

™.

xing phase between

petitions, 80% RM with a

second tempo and 1
second relaxation between
repetitions, or 50% RM
with a 2 second tempo and
1 second relaxation
between repetitions.
Exercise consisted of 3 sets

of knee extensions,

intensity exercise
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performed 3 days a week
for 12 weeks.

Tanimoto | 36 untrained | Random assignment to No Yes B-mode
etal. (47) | young men | either 55-60% RM with a 6 ultrasound
(12 served second tempo and no
as non- relaxing phase between
exercising repetitions or 80-90% RM
controls) with a 2 second tempo and
1 second relaxation
between repetitions.
Exercise consisted of 3 sets V 7
of squat, chest press, lat
pulldown, abdominal bend,
and back extension,
performed 2 days a week \
for 13 weeks.
Holmet | 1luntrained | Random, counterbalanced Yes No %R/ I Significantly
al. (48) young men | performance of 10 sets of greater increases
unilateral leg extensions, in CSA in high
training one leg at 70% intensity versus
1RM and the contralateral > low intensity
leg at 15.5% 1RM, exercise
performed 3 days a week @
for 12 weeks.
Mitchell | 18 untrained | Randomly assignment to Yes MRI, muscle | No differences in
et al. young men | perform 2 of 3 unilateral biopsy CSA between
(50). leg extension protocols: 3 low- and high-
sets at 30% RM; 3 at 8 intensity exercise
RM:; 1 set at 80% R
Training was carri
days per week fo
weeks.
Schuenke | 34 untrained | Randomized mentto | No Yes Muscle biopsy | Significant
etal. (51) | young either modnsity increases in CSA
women RM empo of for high-intensity
exercise; no
0% RM) at significant
-2 seconds, or increase in CSA
ed (~40-60% RM) for low-intensity
tempo of10 seconds exercise
ncentric and 4 seconds
entric. Exercise
ﬁ)nsisted of 3 sets of squat,
leg press, and leg extension,
performed 2-3 days a week
for 6 weeks
Ogasaw ined | Non-randomized crossover | No Yes MRI No differences in
ara et al. men | design to perform 4 sets of CSA between
— bench press exercise at 75% low- and high-

1RM. Training was carried

intensity exercise

(52)@
W
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out 3 days a week for 6
weeks. After a 12 month
washout period, the same
protocol was performed at

30% 1RM. m

tomography), MRI (magnetic resonance imaging)

Abbreviations: RM (repetition maximum); CSA (cross sectional area); CT (com@
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